REAL ANALYSIS TOPIC 34 - ALGEBRAS OF SETS

PAUL L. BAILEY

1. Sequences of Sets

1.1. Collections and Families. A *collection* of sets is a set whose members are sets. Let \mathcal{C} be a collection of sets. Define the *union* and *intersection* of the sets in the collection by

- Union: $\cup \mathcal{C} = \{ x \mid x \in C \text{ for some } C \in \mathcal{C} \};$
- $\cap \mathcal{C} = \{ x \mid x \in C \text{ for all } C \in \mathcal{C} \};$ • Intersection:

An alternative notion for this is

- $\cup_{C \in \mathfrak{C}} C = \cup \mathfrak{C};$
- $\cap_{C \in \mathcal{C}} C = \cap \mathcal{C}.$

We wish to view the sets in the collection as being subsets of some bigger set. If this bigger set is not in evidence, we can always let $X = \bigcup \mathcal{C}$, in which case, \mathcal{C} is a collection of subsets of X.

It is often convenient to label each set with an index from another set, a so-called indexing set. This allows us to repeat and occurrence of a set, and if the indexing set is ordered, to put an order on the sets.

A family of subsets of a set X indexed by a set J is a function

$$f: J \to \mathcal{P}(X).$$

If $j \in J$, we write A_j to mean f(j). It is common to suppress the f in the notation, as follows.

Let $\{A_j \mid j \in J\}$ be a family of subsets of X indexed by J. We note that J may be finite, countably infinite, or even uncountable. It is common that $J = \mathbb{N}$, in which case the family is countable and ordered.

Define the *union* and *intersection* of the sets in the family by

- Union:
- $\bigcup_{j \in J} A_j = \{ x \in X \mid x \in A_j \text{ for some } j \in J \}; \\ \cap_{j \in J} A_j = \{ x \in X \mid x \in A_j \text{ for all } j \in J \}.$ • Intersection:

If $J = \{1, \ldots, n\}$, this is commonly written

- $\cup_{j=1}^n A_j = \cup_{j \in J} A_j;$
- $\bigcap_{j=1}^{n} A_j = \bigcap_{j \in J} A_j.$

If $J = \mathbb{N}$, this is commonly written

- $\cup_{j=1}^{\infty} A_j = \cup_{j \in J} A_j;$ $\cap_{j=1}^{\infty} A_j = \cap_{j \in J} A_j.$

Date: March 8, 2019.

1.2. Sequences of Sets. A sequence of sets is a family of sets indexed by \mathbb{N} .

Definition 1. Let X be a set. A sequence of subsets of X is a function $A : \mathbb{N} \to \mathcal{P}(X)$. We write A_n to mean A(n), and we write (A_n) to indicate the entire sequence.

If $\mathcal{A} \subset \mathcal{P}(X)$, a sequence in \mathcal{A} is a sequence of subsets of X such that $A_n \in \mathcal{A}$ for all $n \in \mathbb{N}$.

Let (A_n) be a sequence of subsets of X. There is a corresponding collection of subsets of X, say $\mathcal{A} = \{A_n \mid n \in \mathbb{N}\}$. The reader should note a couple of distinctions between these objects: the sets in (A_n) come in a specific order, whereas the sets in \mathcal{A} have no order. Also, the same set may appear multiple time in the sequence (A_n) , whereas there is no notion of the multiplicity of a member of \mathcal{A} . However, we should note that unions and intersections may be written in two ways:

$$\cup \mathcal{A} = \bigcup_{n=1}^{\infty} A_n$$
 and $\cap \mathcal{A} = \bigcap_{n=1}^{\infty} A_n$.

If $A \subset X$, we let $A^c = X \setminus A$. That is, the ambient set X is assumed to be understood in our notation.

Definition 2. Let (A_n) be a sequence of subsets of a set X. We say that (A_n) is *disjoint* if $A_i \cap A_j = \emptyset$, for all $i, j \in \mathbb{N}$ with $i \neq j$.

Proposition 1. Let (A_n) be a sequence of subsets of a set X. Then there exists a disjoint sequence (B_n) such that $B_n \subset A_n$ for all $n \in \mathbb{N}$, and

$$\cup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n.$$

Proof. Set $B_n = A_n \setminus (\bigcup_{i=1}^{n-1} A_i)$. Then $B_n \subset A_n$, so it is clear that $\bigcup_{n=1}^{\infty} B_n \subset \bigcup_{n=1}^{\infty} A_n$. Let $A = \bigcup_{n=1}^{\infty} A_n$, and let $x \in A$. Then $x \in A_n$ for some $n \in \mathbb{N}$; let $k = \min\{n \in \mathbb{N} \mid x \in A_n\}$. Then $x \notin A_n$ for n < k, so $x \notin \bigcup_{i=1}^{k-1} A_n$, so $x \in B_k = A_k \setminus \bigcup_{i=1}^{k-1} A_n$. Thus $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$.

If n < k, then $x \notin A_n$, so $x \notin B_n$. If n > k, A_k is removed from B_n , so $x \notin B_n$. This is why the sequence (B_n) is disjoint.

The following properties are relatively easy to see.

Proposition 2 (Distributive Laws). Let (A_n) be a sequence of subsets of a set X. Let $B \subset X$. Then

(a)
$$\left(\bigcup_{n=1}^{\infty} A_n\right) \cap B = \bigcup_{n=1}^{\infty} (A_n \cap B);$$

(b) $\left(\bigcap_{n=1}^{\infty} A_n\right) \cup B = \bigcap_{n=1}^{\infty} (A_n \cup B).$

Proof. Exercise.

Proposition 3 (DeMorgan's Laws). Let (A_n) be a sequence of subsets of a set X. Then

(a)
$$\left(\bigcup_{n=1}^{\infty} A_n\right)^c = \bigcap_{n=1}^{\infty} A_n^c;$$

(b) $\left(\bigcap_{n=1}^{\infty} A_n\right)^c = \bigcup_{n=1}^{\infty} A_n^c.$

Proof. Exercise.

 $\mathbf{2}$

Proposition 4. Let (A_n) be a sequence of functions from a set X. Let $f: X \to Y$. Then

(a)
$$f\left(\bigcup_{n=1}^{\infty} A_n\right) = \bigcup_{n=1}^{\infty} f(A_n);$$

(b) $f\left(\bigcap_{n=1}^{\infty} A_n\right) \subset \bigcap_{n=1}^{\infty} f(A_n).$

Proof.

(a) (C) Let $y \in f(\bigcup_{n=1}^{\infty} A_n)$. Then y = f(x) for some $x \in \bigcup_{n=1}^{\infty} A_n$. There exists $n \in \mathbb{N}$ such that $x \in A_n$, so $y \in f(A_n)$. Thus $y \in \bigcup_{n=1}^{\infty} f(A_n)$.

(a) (\supset) Let $y \in \bigcup_{n=1}^{\infty} f(A_n)$. Then $y \in f(A_n)$ for some $n \in \mathbb{N}$, so y = f(x) for some $x \in A_n$. Now $x \in \bigcup_{n=1}^{\infty} A_n$, so $f(x) \in f(\bigcup_{n=1}^{\infty} A_n)$.

(b) (C) Let $y \in f(\bigcup_{n=1}^{\infty} A_n)$. Then y = f(x) for some $x \in \bigcap_{n=1}^{\infty} A_n$. Then $x \in A_n$ for every $n \in bN$, so $y = f(x) \in f(A_n)$ for every $n \in \mathbb{N}$. Thus $y \in \bigcap_{n=1}^{\infty} f(A_n)$. \Box

Can you find an example where the inverse inclusion of (b) above does not hold?

Proposition 5. Let (A_n) be a sequence of functions from a set X. Let $g: Y \to X$. Then

(a)
$$g^{-1}\left(\bigcup_{n=1}^{\infty} A_n\right) = \bigcup_{n=1}^{\infty} g^{-1}(A_n);$$

(b) $g^{-1}\left(\bigcap_{n=1}^{\infty} A_n\right) = \bigcap_{n=1}^{\infty} g^{-1}(A_n).$

Proof.

(a) (C) Let $x \in g^{-1}(\bigcup_{n=1}^{\infty} A_n)$, and let y = g(x). Then $y \in \bigcup_{n=1}^{\infty} A_n$, so $y \in A_n$ for some $n \in \mathbb{N}$. Thus $x \in g^{-1}(A_n)$, so $x \in \bigcup_{n=1}^{\infty} g^{-1}(A_n)$.

(a) (\supset) Let $x \in \bigcup_{n=1}^{\infty} g^{-1}(A_n)$, and let y = g(x). Then $x \in g^{-1}(A_n)$ for some

(a) (b) Let $x \in O_{n=1}^{\infty}g^{-1}(A_n)$, and let y = g(x). Then $x \in g^{-1}(A_n)$ for some $n \in \mathbb{N}$, so $y \in A_n$. Then $y \in \bigcup_{n=1}^{\infty} A_n$, so $x \in g^{-1}(\bigcup_{n=1}^{\infty} A_n)$. (b) (c) Let $x \in g^{-1}(\bigcap_{n=1}^{\infty} A_n)$, and let y = g(x). Then $y \in \bigcap_{n=1}^{\infty} A_n$, so $y \in A_n$ for every $n \in \mathbb{N}$. Thus $x \in g^{-1}(A_n)$ for every $n \in \mathbb{N}$, so $x \in \bigcap_{n=1}^{\infty} g^{-1}(A_n)$. (b) (c) Let $x \in \bigcap_{n=1}^{\infty} g^{-1}(A_n)$, and let y = g(x). Then $x \in g^{-1}(A_n)$.

 $n \in \mathbb{N}$, so $y \in A_n$ for every $n \in \mathbb{N}$. Then $y \in \bigcap_{n=1}^{\infty} A_n$, so $x \in g^{-1}(\bigcap_{n=1}^{\infty} A_n)$. \square

1.3. Monotone Sequences. The power set of X, $\mathcal{P}(X)$, is partially ordered by inclusion. That is, if $A \subset B$, we may think of A as "less than" B is this partial order. If A is not contained in B, and B is not contained in A, they are not related by this partial order. We may use this partial order to define monotone sequences of sets.

Definition 3. Let (A_n) be a sequence of subsets of a set X.

We say that (A_n) is increasing (or nondecreasing, or expanding) if $A_k \subset A_{k+1}$, for all $k \in \mathbb{N}$.

We say that (A_n) is decreasing (or nonincreasing, or contracting) if $A_k \supset A_{k+1}$, for all $k \in \mathbb{N}$.

We say that (A_n) is monotone if it is either increasing or decreasing.

Problem 1. Let (A_n) be a sequence of subsets of a set X.

- (a) Show that if (A_n) is increasing, then $\bigcap_{n=k}^{\infty} A_n = A_k$.
- (b) Show that if (A_n) is decreasing, then $\bigcup_{n=k}^{\infty} A_n = A_k$.
- (c) Show that if (A_n) is decreasing if and only if (A_n^c) is increasing sequence.

- $\underline{A}_n = \bigcap_{j=n}^{\infty} A_j.$ $\overline{A}_n = \bigcup_{j=n}^{\infty} A_j.$
- (a) Show that (\underline{A}_n) is a increasing sequence of sets.
- (b) Show that (\overline{A}_n) is an decreasing sequence of sets.

Problem 3. Let (A_n) be a sequence of subsets of a set X.

(a) Show that, for all $n \in \mathbb{N}$, we have

$$\underline{A}_n \subset A_n \subset A_n.$$

(b) Find a sequence of sets (A_n) such that $-A_i \neq A_j \text{ for } i \neq j, \text{ and} \\ -\underline{A_i} \not\subseteq A_i \not\subseteq \overline{A_i}.$

1.4. Limits of Sequences of Sets. We define limits of sequences of sets. Although the definition uses the order of the sets imposed by the fact it is indexed by \mathbb{N} , it turns out that any rearrangement of the sets will produce the same limits, as we now define them.

Definition 4. Let (A_n) be a sequence of subsets of a set X.

The *limit inferior* of (A_n) is

$$\liminf A_n = \bigcup_{i=1}^{\infty} \cap_{j=i}^{\infty} A_j.$$

The *limit superior* of (A_n) is

$$\limsup A_n = \bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} A_j.$$

An alternative notation is used by some books: let $\underline{\lim} A_n = \liminf A_n$ and $\overline{\lim} A_n = \limsup A_n$. We may call $\underline{\lim} A_n$ the lower limit and $\overline{\lim} A_n$ the upper limit.

Problem 4. Let (A_n) be a sequence of subsets of a set X.

- (a) Show that $\underline{\lim} A_n = \underline{\lim} \underline{A}_n$.
- (b) Show that $\overline{\lim} A_n = \lim \overline{A}_n$.

Proposition 6. Let (A_n) be a sequence of subsets of a set X. Show that

(a) $\liminf A_n = \{x \in X \mid x \in A_n \text{ for all but finitely many } n \in \mathbb{N}\};$

(b) $\limsup A_n = \{x \in X \mid x \in A_n \text{ for infinitely many } n \in \mathbb{N}\};$

(c) $\liminf A_n \subset \limsup A_n$.

Proof.

(a) (C) Suppose that $x \in A_n$ for all but finitely many n. Then, let $N \in \mathbb{N}$ be so

large that $x \in A_n$ for $n \ge N$. Then $x \in \bigcap_{j=N}^{\infty} A_j = \underline{A}_N$, so $x \in \bigcup_{i=1}^{\infty} \underline{A}_i = \liminf A_n$. (a) (\supset) Suppose that $x \in \liminf A_n$. Then $x \in \bigcup_{i=1}^{\infty} \underline{A}_i$, so $x \in \underline{A}_i$ for some $i \in \mathbb{N}$. But $\underline{A}_i = \bigcap_{j=i}^{\infty} A_j$, so $x \in A_j$ for all $j \ge i$. Thus $x \in A_n$ for all but finitely many n.

(b) (C) Suppose that $x \in A_n$ for infinitely many n. Then for every $i \in \mathbb{N}$, there exists $n \geq N$ such that $n \geq i$ implies $x \in A_n$. Thus for every $i \in \mathbb{N}$, $x \in \bigcup_{j=i}^{\infty} A_i = \overline{A}_i$. Thus $x \in \bigcap_{i=1}^{\infty} \overline{A}_i = \limsup A_n$.

(b) (\supset) Suppose that $x \in \limsup A_n$. Then $x \in \bigcap_{i=1}^{\infty} \overline{A}_i$, so $x \in \overline{A}_i = \bigcup_{i=1}^{\infty}$ for all *i*. Thus, for every $i \in \mathbb{N}$, there exists $n \geq i$ such that $x \in A_n$, which implies that $x \in A_n$ for infinitely many $n \in \mathbb{N}$.

(c) Let $x \in \liminf A_n$. Then $x \in A_n$ for all but finitely many $n \in \mathbb{N}$; since \mathbb{N} is infinitely, this implies that $x \in A_n$ for infinitely many $n \in \mathbb{N}$, so $x \in \limsup A_n$. \Box

Definition 5. Let (A_n) be a sequence of subsets of a set X.

We say that (A_n) converges if $\liminf A_n = \limsup A_n$. In this case, the *limit* of (A_n) is

$$\lim A_n = \liminf A_n = \limsup A_n.$$

If we claim that $\lim A_n = L$, we mean that (A_n) converges, and that the limit of (A_n) is L.

Problem 5. Let (A_n) be a sequence of subsets of a set X.

(a) Show that if (A_n) is decreasing, then $\lim A_n = \bigcap_{i=1}^{\infty} A_i$.

(b) Show that if (A_n) is increasing, then $\lim A_n = \bigcup_{i=1}^{\infty} A_i$.

Problem 6. Let (A_n) and (B_n) be sequences of subsets of a set X. Show that

 $(\underline{\lim} A_n \cup \underline{\lim} B_n) \subset \underline{\lim} (A_n \cup B_n) \subset (\underline{\lim} A_n \cup \overline{\lim} B_n) \subset \overline{\lim} (A_n \cup B_n) \subset (\overline{\lim} A_n \cup \overline{\lim} B_n).$

2. Algebras of Sets

2.1. Algebras of Sets.

Definition 6. Let X be a set and let $\mathcal{A} \subset \mathcal{P}(X)$. We say that \mathcal{A} is an *algebra* of subsets of X if

(A0) $X \in \mathcal{A};$

(A1) $A, B \in \mathcal{A}$ implies $A \cup B \in \mathcal{A}$;

(A2) $A \in \mathcal{A}$ implies $A^c \in \mathcal{A}$, where $A^c = X \setminus A$.

Proposition 7. Let \mathcal{A} be an algebra of subsets of X. Then

(A3) $A, B \in \mathcal{A}$ implies $A \cap B \in \mathcal{A}$, and

(A4) $A, B \in \mathcal{A}$ implies $A \setminus B \in \mathcal{A}$.

Proof. Let $A, B \in \mathcal{A}$. Then $A^c, B^c \in \mathcal{A}$ by (A2), and $A^c \cup B^c \in \mathcal{A}$ by (A1). The by DeMorgan's Law and (A2) again,

$$A \cap B = (A^c \cup B^c)^c \in \mathcal{A}.$$

Now note that $A \setminus B = A \cap B^c \in \mathcal{A}$, by (A2) and (A3).

Proposition 8. Let \mathcal{C} be a collection of subsets of a set X satisfying

(C0) $X \in \mathcal{C}$;

(C1) $A, B \in \mathfrak{C}$ implies $A \smallsetminus B \in \mathfrak{C}$.

Then \mathfrak{C} is an algebra of subsets of X.

Proof. Exercise.

Proposition 9. Let \mathfrak{A} be a collection of algebras of subsets of a set X. Then $\cap \mathfrak{A}$ is an algebra of subsets of X.

Proof. Let $A, B \in \cap \mathfrak{A}$. Then $A, B \in \mathcal{A}$ for every $\mathcal{A} \in \mathfrak{A}$. Since each \mathcal{A} in \mathfrak{A} is an algebra, $A \cup B$ and A^c are int \mathcal{A} , for every \mathcal{A} in \mathfrak{A} . So, $A \cup B$ and A^c are in $\cap \mathfrak{A}$. \Box

Definition 7. Let X be a set and let $\mathcal{C} \subset \mathcal{P}(X)$. The algebra generated by \mathcal{C} is

 $\langle \mathfrak{C} \rangle = \cap \{ \mathcal{A} \subset \mathfrak{P}(X) \mid \mathcal{A} \text{ is an algebra which contains } \mathfrak{C} \}.$

One sees that the algebra generated by ${\mathfrak C}$ is the smallest algebra which contains all the sets in ${\mathfrak C}.$

Proposition 10. Let \mathcal{A} be an algebra of subsets of X, and let (A_n) be a sequence of sets in \mathcal{A} . Then there exists a sequence (B_n) of sets in \mathcal{A} such that $B_j \cap B_k = \emptyset$ if $j \neq k$, and

$$\cup_{i=1}^{\infty} B_i = \cup_{i=1}^{\infty} A_i$$

Proof. Define

$$B_n = A_n \smallsetminus \left(\bigcup_{i=1}^{n-1} A_n \right).$$

Since $B_n \subset A_n$, it is clear that

$$\cup_{i=1}^{\infty} B_i \subset \bigcup_{i=1}^{\infty} A_i.$$

Let $x \in \bigcup_{i=1}^{\infty} A_i$. Then $x \in A_i$ for some *i*; let *n* denote the smallest positive integer such that $x \in A_n$. Then $x \in A_n \setminus (\bigcup_{i=1}^{n-1} A_i)$, so $x \in B_n$. Thus $x \in \bigcup_{i=1}^{\infty} B_i$, so

$$\cup_{i=1}^{\infty} A_i \subset \bigcup_{i=1}^{\infty} B_i$$

which implies that

$$\cup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i.$$

Suppose that $x \in B_j \cap B_k$ for some j < k; then $x \in B_j$, so $x \in A_j$. But then $x \in \bigcup_{i=1}^{k-1} A_i$, so $x \notin A_k \smallsetminus (\bigcup_{i=1}^{k-1} A_n) = B_k$, a contradiction. Thus $B_j \cap B_k = \emptyset$. \Box

2.2. Sigma Algebras.

Definition 8. Let X be a set and let $\mathcal{A} \subset \mathcal{P}(X)$. We say that \mathcal{A} is a σ -algebra of subsets of X if

- (S0) $X \in \mathcal{A};$
- (S1) if $\mathcal{C} \subset \mathcal{A}$ is countable, then $\cup \mathcal{C} \in \mathcal{A}$;
- (S2) if $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$.

That is, a σ -algebra is an algebra which is not only closed under finite unions, but is also closed under countable unions.

Proposition 11. Let \mathcal{A} be an σ -algebra of subsets of X. Then

(S3) if $\mathcal{C} \subset \mathcal{A}$ is countable, then $\cap \mathcal{C} \in \mathcal{A}$.

Proof. DeMorgan's Law also applies to infinite collections; let $\mathcal{C} \subset \mathcal{A}$ be countable. Then

$$\cap \mathcal{C} = \cap_{A \in \mathcal{C}} A = (\cup_{A \in \mathcal{C}} A^c)^c$$

Now if $A \in \mathcal{C}$, then $A \in \mathcal{A}$, so $A^c \in \mathcal{A}$. Thus $\bigcup_{A \in \mathcal{C}} A^c$ is a countable union of sets in \mathcal{A} , and so is in \mathcal{A} . Thus its complement $\cap \mathcal{C}$ is in \mathcal{A} .

Proposition 12. Let \mathfrak{A} be a collection of σ -algebras of subsets of a set X. Then $\cap \mathfrak{A}$ is an σ -algebra of subsets of X.

Proof. Exercise.

Definition 9. Let X be a set and let $\mathcal{C} \subset \mathcal{P}(X)$. The σ -algebra generated by \mathcal{C} , denoted $\langle \mathcal{C} \rangle$, is the intersection of all σ -algebras which contain \mathcal{C} .

We see that $\langle \mathcal{C} \rangle$ is necessarily a σ -algebra, and is the smallest σ -algebra which contains all of the sets in the collection \mathcal{C} .

(a) $\underline{A}_n, \overline{A}_n \in \mathcal{A};$

(b) $\liminf A_n, \limsup A_n \in \mathcal{A}.$

Proof. Since $\underline{A}_n = \bigcup_{i=n}^{\infty}$ is a union of countable collection from \mathcal{A} , we know that $\underline{A}_n \in \mathcal{A}$. Also, $\overline{A}_n = \bigcup_{i=n}^{\infty} A_i$ is the union of a countable collection, so $\overline{A}_n \in \mathcal{A}$.

Now $\liminf A_n = \bigcup_{i=1}^{\infty} \underline{A}_n$, so $\liminf A_n$ is a countable union of sets in \mathcal{A} , so $\liminf A_n \in \mathcal{A}$. Similarly, $\limsup A_n = \bigcap_{i=1}^{\infty} \overline{A}_n$, so $\limsup A_n$ is a countable intersection of sets in \mathcal{A} , and so is in \mathcal{A} .

3. Exercises

Problem 7. Let (A_n) be a sequence of subsets of a set X. Show that $\liminf A_n = (\limsup A_n^c)^c$.

Problem 8. Let $X = \mathbb{R}$. Define a sequence (A_n) of subsets X by

$$A_n = \begin{cases} \left[0, \frac{1}{n}\right] & \text{ if } n \text{ is odd }; \\ \left[0, n\right] & \text{ if } n \text{ is even }. \end{cases}$$

Find $\liminf A_n$ and $\limsup A_n$.

Problem 9. Let $X = [0,1] \subset \mathbb{R}$. Define a sequence (A_n) of subsets X by

$$A_n = \left\{ \frac{m}{n} \mid m \in \mathbb{Z} \text{ and } 0 \le m \le n \right\}.$$

Find $\liminf A_n$ and $\limsup A_n$.

Problem 10. Let $X = \mathbb{R}$. Define a sequence (A_n) of subsets X by

$$a_n = 4\sin^2\frac{2\pi n}{3}$$
 and $A_n = [a_n - 1, a_n + 1].$

Find $\liminf A_n$ and $\limsup A_n$.

DEPARTMENT OF MATHEMATICS AND CSCI, BASIS SCOTTSDALE *Email address:* paul.bailey@basised.com