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TOPIC 34 - ALGEBRAS OF SETS

PAUL L. BAILEY

1. Sequences of Sets

1.1. Collections and Families. A collection of sets is a set whose members are
sets. Let C be a collection of sets. Define the union and intersection of the sets in
the collection by

• Union: ∪C = {x | x ∈ C for some C ∈ C};
• Intersection: ∩C = {x | x ∈ C for all C ∈ C};

An alternative notion for this is

• ∪C∈CC = ∪C;
• ∩C∈CC = ∩C.

We wish to view the sets in the collection as being subsets of some bigger set. If
this bigger set is not in evidence, we can always let X = ∪C, in which case, C is a
collection of subsets of X.

It is often convenient to label each set with an index from another set, a so-called
indexing set. This allows us to repeat and occurrence of a set, and if the indexing
set is ordered, to put an order on the sets.

A family of subsets of a set X indexed by a set J is a function

f : J → P(X).

If j ∈ J , we write Aj to mean f(j). It is common to suppress the f in the notation,
as follows.

Let {Aj | j ∈ J} be a family of subsets of X indexed by J . We note that J
may be finite, countably infinite, or even uncountable. It is common that J = N,
in which case the family is countable and ordered.

Define the union and intersection of the sets in the family by

• Union: ∪j∈JAj = {x ∈ X | x ∈ Aj for some j ∈ J};
• Intersection: ∩j∈JAj = {x ∈ X | x ∈ Aj for all j ∈ J}.

If J = {1, . . . , n}, this is commonly written

• ∪nj=1Aj = ∪j∈JAj ;
• ∩nj=1Aj = ∩j∈JAj .

If J = N, this is commonly written

• ∪∞j=1Aj = ∪j∈JAj ;
• ∩∞j=1Aj = ∩j∈JAj .
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1.2. Sequences of Sets. A sequence of sets is a family of sets indexed by N.

Definition 1. Let X be a set. A sequence of subsets of X is a function A :
N → P(X). We write An to mean A(n), and we write (An) to indicate the entire
sequence.

If A ⊂ P(X), a sequence in A is a sequence of subsets of X such that An ∈ A

for all n ∈ N.

Let (An) be a sequence of subsets of X. There is a corresponding collection of
subsets of X, say A = {An | n ∈ N}. The reader should note a couple of distinctions
between these objects: the sets in (An) come in a specific order, whereas the sets
in A have no order. Also, the same set may appear multiple time in the sequence
(An), whereas there is no notion of the multiplicity of a member of A. However,
we should note that unions and intersections may be written in two ways:

∪A =

∞⋃
n=1

An and ∩A =

∞⋂
n=1

An.

If A ⊂ X, we let Ac = X r A. That is, the ambient set X is assumed to be
understood in our notation.

Definition 2. Let (An) be a sequence of subsets of a set X. We say that (An) is
disjoint if Ai ∩Aj = ∅, for all i, j ∈ N with i 6= j.

Proposition 1. Let (An) be a sequence of subsets of a set X. Then there exists a
disjoint sequence (Bn) such that Bn ⊂ An for all n ∈ N, and

∪∞n=1Bn = ∪∞n=1An.

Proof. Set Bn = An r (∪n−1i=1 Ai). Then Bn ⊂ An, so it is clear that ∪∞n=1Bn ⊂
∪∞n=1An. Let A = ∪∞n=1An, and let x ∈ A. Then x ∈ An for some n ∈ N;

let k = min{n ∈ N | x ∈ An}. Then x /∈ An for n < k, so x /∈ ∪k−1i=1An, so

x ∈ Bk = Ak r ∪k−1i=1An. Thus ∪∞n=1Bn = ∪∞n=1An.
If n < k, then x /∈ An, so x /∈ Bn. If n > k, Ak is removed from Bn, so x /∈ Bn.

This is why the sequence (Bn) is disjoint. �

The following properties are relatively easy to see.

Proposition 2 (Distributive Laws). Let (An) be a sequence of subsets of a set X.
Let B ⊂ X. Then

(a)

(⋃∞
n=1An

)
∩B =

⋃∞
n=1(An ∩B);

(b)

(⋂∞
n=1An

)
∪B =

⋂∞
n=1(An ∪B).

Proof. Exercise. �

Proposition 3 (DeMorgan’s Laws). Let (An) be a sequence of subsets of a set X.
Then

(a)

(⋃∞
n=1An

)c

=
⋂∞

n=1A
c
n;

(b)

(⋂∞
n=1An

)c

=
⋃∞

n=1A
c
n.

Proof. Exercise. �
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Proposition 4. Let (An) be a sequence of functions from a set X. Let f : X → Y .
Then

(a) f

(⋃∞
n=1An

)
=
⋃∞

n=1 f(An);

(b) f

(⋂∞
n=1An

)
⊂
⋂∞

n=1 f(An).

Proof.
(a) (⊂) Let y ∈ f(∪∞n=1An). Then y = f(x) for some x ∈ ∪∞n=1An. There exists

n ∈ N such that x ∈ An, so y ∈ f(An). Thus y ∈ ∪∞n=1f(An).
(a) (⊃) Let y ∈ ∪∞n=1f(An). Then y ∈ f(An) for some n ∈ N, so y = f(x) for

some x ∈ An. Now x ∈ ∪∞n=1An, so f(x) ∈ f(∪∞n=1An).
(b) (⊂) Let y ∈ f(∪∞n=1An). Then y = f(x) for some x ∈ ∩∞n=1An. Then x ∈ An

for every n ∈ bN , so y = f(x) ∈ f(An) for every n ∈ N. Thus y ∈ ∩∞n=1f(An). �

Can you find an example where the inverse inclusion of (b) above does not hold?

Proposition 5. Let (An) be a sequence of functions from a set X. Let g : Y → X.
Then

(a) g−1
(⋃∞

n=1An

)
=
⋃∞

n=1 g
−1(An);

(b) g−1
(⋂∞

n=1An

)
=
⋂∞

n=1 g
−1(An).

Proof.
(a) (⊂) Let x ∈ g−1(∪∞n=1An), and let y = g(x). Then y ∈ ∪∞n=1An, so y ∈ An

for some n ∈ N. Thus x ∈ g−1(An), so x ∈ ∪∞n=1g
−1(An).

(a) (⊃) Let x ∈ ∪∞n=1g
−1(An), and let y = g(x). Then x ∈ g−1(An) for some

n ∈ N, so y ∈ An. Then y ∈ ∪∞n=1An, so x ∈ g−1(∪∞n=1An).
(b) (⊂) Let x ∈ g−1(∩∞n=1An), and let y = g(x). Then y ∈ ∩∞n=1An, so y ∈ An

for every n ∈ N. Thus x ∈ g−1(An) for every n ∈ N, so x ∈ ∩∞n=1g
−1(An).

(b) (⊃) Let x ∈ ∩∞n=1g
−1(An), and let y = g(x). Then x ∈ g−1(An) for every

n ∈ N, so y ∈ An for every n ∈ N. Then y ∈ ∩∞n=1An, so x ∈ g−1(∩∞n=1An). �

1.3. Monotone Sequences. The power set of X, P(X), is partially ordered by
inclusion. That is, if A ⊂ B, we may think of A as “less than” B is this partial
order. If A is not contained in B, and B is not contained in A, they are not related
by this partial order. We may use this partial order to define monotone sequences
of sets.

Definition 3. Let (An) be a sequence of subsets of a set X.
We say that (An) is increasing (or nondecreasing, or expanding) if Ak ⊂ Ak+1,

for all k ∈ N.
We say that (An) is decreasing (or nonincreasing, or contracting) if Ak ⊃ Ak+1,

for all k ∈ N.
We say that (An) is monotone if it is either increasing or decreasing.

Problem 1. Let (An) be a sequence of subsets of a set X.

(a) Show that if (An) is increasing, then ∩∞n=kAn = Ak.
(b) Show that if (An) is decreasing, then ∪∞n=kAn = Ak.
(c) Show that if (An) is decreasing if and only if (Ac

n) is increasing sequence.
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Problem 2. Let (An) be a sequence of subsets of a setX. Define two new sequences
of sets,

• An = ∩∞j=nAj .

• An = ∪∞j=nAj .

(a) Show that (An) is a increasing sequence of sets.
(b) Show that (An) is an decreasing sequence of sets.

Problem 3. Let (An) be a sequence of subsets of a set X.

(a) Show that, for all n ∈ N, we have

An ⊂ An ⊂ An.

(b) Find a sequence of sets (An) such that
– Ai 6= Aj for i 6= j, and

– Ai * Ai * Ai.

1.4. Limits of Sequences of Sets. We define limits of sequences of sets. Al-
though the definition uses the order of the sets imposed by the fact it is indexed
by N, it turns out that any rearrangement of the sets will produce the same limits,
as we now define them.

Definition 4. Let (An) be a sequence of subsets of a set X.
The limit inferior of (An) is

lim inf An = ∪∞i=1 ∩∞j=i Aj .

The limit superior of (An) is

lim supAn = ∩∞i=1 ∪∞j=i Aj .

An alternative notation is used by some books: let limAn = lim inf An and
limAn = lim supAn. We may call limAn the lower limit and limAn the upper
limit.

Problem 4. Let (An) be a sequence of subsets of a set X.

(a) Show that limAn = limAn.
(b) Show that limAn = limAn.
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Proposition 6. Let (An) be a sequence of subsets of a set X. Show that

(a) lim inf An = {x ∈ X | x ∈ An for all but finitely many n ∈ N};
(b) lim supAn = {x ∈ X | x ∈ An for infinitely many n ∈ N};
(c) lim inf An ⊂ lim supAn.

Proof.

(a) (⊂) Suppose that x ∈ An for all but finitely many n. Then, let N ∈ N be so
large that x ∈ An for n ≥ N . Then x ∈ ∩∞j=NAj = AN , so x ∈ ∪∞i=1Ai = lim inf An.

(a) (⊃) Suppose that x ∈ lim inf An. Then x ∈ ∪∞i=1Ai, so x ∈ Ai for some
i ∈ N. But Ai = ∩∞j=iAj , so x ∈ Aj for all j ≥ i. Thus x ∈ An for all but finitely
many n.

(b) (⊂) Suppose that x ∈ An for infinitely many n. Then for every i ∈ N,
there exists n ≥ N such that n ≥ i implies x ∈ An. Thus for every i ∈ N,
x ∈ ∪∞j=iAi = Ai. Thus x ∈ ∩∞i=1Ai = lim supAn.

(b) (⊃) Suppose that x ∈ lim supAn. Then x ∈ ∩∞i=1Ai, so x ∈ Ai = ∪∞j=i for
all i. Thus, for every i ∈ N, there exists n ≥ i such that x ∈ An, which implies that
x ∈ An for infinitely many n ∈ N.

(c) Let x ∈ lim inf An. Then x ∈ An for all but finitely many n ∈ N; since N is
infinitely, this implies that x ∈ An for infinitely many n ∈ N, so x ∈ lim supAn. �

Definition 5. Let (An) be a sequence of subsets of a set X.
We say that (An) converges if lim inf An = lim supAn. In this case, the limit of

(An) is
limAn = lim inf An = lim supAn.

If we claim that limAn = L, we mean that (An) converges, and that the limit
of (An) is L.

Problem 5. Let (An) be a sequence of subsets of a set X.

(a) Show that if (An) is decreasing, then limAn = ∩∞i=1Ai.
(b) Show that if (An) is increasing, then limAn = ∪∞i=1Ai.

Problem 6. Let (An) and (Bn) be sequences of subsets of a set X. Show that

(limAn∪limBn) ⊂ lim(An∪Bn) ⊂ (limAn∪limBn) ⊂ lim(An∪Bn) ⊂ (limAn∪limBn).



6

2. Algebras of Sets

2.1. Algebras of Sets.

Definition 6. Let X be a set and let A ⊂ P(X). We say that A is an algebra of
subsets of X if

(A0) X ∈ A;
(A1) A,B ∈ A implies A ∪B ∈ A;
(A2) A ∈ A implies Ac ∈ A, where Ac = X rA.

Proposition 7. Let A be an algebra of subsets of X. Then

(A3) A,B ∈ A implies A ∩B ∈ A, and
(A4) A,B ∈ A implies ArB ∈ A.

Proof. Let A,B ∈ A. Then Ac, Bc ∈ A by (A2), and Ac ∪ Bc ∈ A by (A1). The
by DeMorgan’s Law and (A2) again,

A ∩B = (Ac ∪Bc)c ∈ A.

Now note that ArB = A ∩Bc ∈ A, by (A2) and (A3). �

Proposition 8. Let C be a collection of subsets of a set X satisfying

(C0) X ∈ C;
(C1) A,B ∈ C implies ArB ∈ C.

Then C is an algebra of subsets of X.

Proof. Exercise. �

Proposition 9. Let A be a collection of algebras of subsets of a set X. Then ∩A
is an algebra of subsets of X.

Proof. Let A,B ∈ ∩A. Then A,B ∈ A for every A ∈ A. Since each A in A is an
algebra, A∪B and Ac are int A, for every A in A. So, A∪B and Ac are in ∩A. �

Definition 7. Let X be a set and let C ⊂ P(X). The algebra generated by C is

〈C〉 = ∩{A ⊂ P(X) | A is an algebra which contains C}.

One sees that the algebra generated by C is the smallest algebra which contains
all the sets in C.



7

Proposition 10. Let A be an algebra of subsets of X, and let (An) be a sequence
of sets in A. Then there exists a sequence (Bn) of sets in A such that Bj ∩Bk = ∅
if j 6= k, and

∪∞i=1Bi = ∪∞i=1Ai.

Proof. Define

Bn = An r
(
∪n−1i=1 An

)
.

Since Bn ⊂ An, it is clear that

∪∞i=1Bi ⊂ ∪∞i=1Ai.

Let x ∈ ∪∞i=1Ai. Then x ∈ Ai for some i; let n denote the smallest positive
integer such that x ∈ An. Then x ∈ An r (∪n−1i=1 Ai), so x ∈ Bn. Thus x ∈ ∪∞i=1Bi,
so

∪∞i=1Ai ⊂ ∪∞i=1Bi,

which implies that
∪∞i=1Bi = ∪∞i=1Ai.

Suppose that x ∈ Bj ∩ Bk for some j < k; then x ∈ Bj , so x ∈ Aj . But then

x ∈ ∪k−1i=1Ai, so x /∈ Ak r (∪k−1i=1An) = Bk, a contradiction. Thus Bj ∩Bk = ∅. �

2.2. Sigma Algebras.

Definition 8. Let X be a set and let A ⊂ P(X). We say that A is a σ-algebra of
subsets of X if

(S0) X ∈ A;
(S1) if C ⊂ A is countable, then ∪C ∈ A;
(S2) if A ∈ A, then Ac ∈ A.

That is, a σ-algebra is an algebra which is not only closed under finite unions,
but is also closed under countable unions.

Proposition 11. Let A be an σ-algebra of subsets of X. Then

(S3) if C ⊂ A is countable, then ∩C ∈ A.

Proof. DeMorgan’s Law also applies to infinite collections; let C ⊂ A be countable.
Then

∩C = ∩A∈CA = (∪A∈CAc)c.

Now if A ∈ C, then A ∈ A, so Ac ∈ A. Thus ∪A∈CAc is a countable union of sets
in A, and so is in A. Thus its complement ∩C is in A. �

Proposition 12. Let A be a collection of σ-algebras of subsets of a set X. Then
∩A is an σ-algebra of subsets of X.

Proof. Exercise. �

Definition 9. Let X be a set and let C ⊂ P(X). The σ-algebra generated by C,
denoted 〈C〉, is the intersection of all σ-algebras which contain C.

We see that 〈C〉 is necessarily a σ-algebra, and is the smallest σ-algebra which
contains all of the sets in the collection C.
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Proposition 13. Let A be a σ-algebra of subsets of a set X. Let (An) be a sequence
in A. Then

(a) An, An ∈ A;
(b) lim inf An, lim supAn ∈ A.

Proof. Since An = ∪∞i=n is a union of countable collection from A, we know that
An ∈ A. Also, An = ∪∞i=nAi is the union of a countable collection, so An ∈ A.

Now lim inf An = ∪∞i=1An, so lim inf An is a countable union of sets in A, so
lim inf An ∈ A. Similarly, lim supAn = ∩∞i=1An, so lim supAn is a countable inter-
section of sets in A, and so is in A. �

3. Exercises

Problem 7. Let (An) be a sequence of subsets of a set X. Show that

lim inf An = (lim supAc
n)c.

Problem 8. Let X = R. Define a sequence (An) of subsets X by

An =


[
0,

1

n

]
if n is odd ;

[0, n] if n is even .

Find lim inf An and lim supAn.

Problem 9. Let X = [0, 1] ⊂ R. Define a sequence (An) of subsets X by

An =

{
m

n
| m ∈ Z and 0 ≤ m ≤ n

}
.

Find lim inf An and lim supAn.

Problem 10. Let X = R. Define a sequence (An) of subsets X by

an = 4 sin2 2πn

3
and An = [an − 1, an + 1].

Find lim inf An and lim supAn.
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